Skip to content

Math Formulas

Markdown supports embedding math formulas using LaTeX syntax, providing professional mathematical expression capabilities for technical documents, academic papers, and teaching materials.

Basic LaTeX Math Syntax

Inline Formulas

Use single dollar signs $ to enclose formulas:

markdown
This is an inline formula: $E = mc^2$, which is Einstein's mass-energy equation.

The area of a circle is $A = \pi r^2$, where $r$ is the radius.

The solution to the quadratic equation: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Rendered Output:

This is an inline formula: $E = mc^2$, which is Einstein's mass-energy equation.

The area of a circle is $A = \pi r^2$, where $r$ is the radius.

The solution to the quadratic equation: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Block Formulas

Use double dollar signs $$ to enclose formulas, which will be displayed on a separate centered line:

markdown
$$
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
$$

$$
\lim_{x \to 0} \frac{\sin x}{x} = 1
$$

Rendered Output:

$$ \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} $$

$$ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} $$

$$ \lim_{x \to 0} \frac{\sin x}{x} = 1 $$

Basic Math Elements

Superscripts and Subscripts

markdown
<!-- Superscripts -->
$x^2$, $e^{i\pi}$, $2^{10}$

<!-- Subscripts -->
$x_1$, $a_{ij}$, $\log_2 n$

<!-- Combined -->
$x_1^2$, $a_{i,j}^{(k)}$, $\sum_{i=1}^n x_i^2$

Rendered Output:

$x^2$, $e^{i\pi}$, $2^{10}$

$x_1$, $a_{ij}$, $\log_2 n$

$x_1^2$, $a_{i,j}^{(k)}$, $\sum_{i=1}^n x_i^2$

Fractions

markdown
<!-- Basic fractions -->
$\frac{1}{2}$, $\frac{a}{b}$, $\frac{x+y}{x-y}$

<!-- Continued fractions -->
$\frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \cdots}}}$

<!-- Complex fractions -->
$\frac{\partial^2 f}{\partial x^2}$, $\frac{d}{dx}\left(\frac{1}{x}\right)$

Rendered Output:

$\frac{1}{2}$, $\frac{a}{b}$, $\frac{x+y}{x-y}$

$\frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \cdots}}}$

$\frac{\partial^2 f}{\partial x^2}$, $\frac{d}{dx}\left(\frac{1}{x}\right)$

Square Roots

markdown
<!-- Square roots -->
$\sqrt{2}$, $\sqrt{x^2 + y^2}$

<!-- n-th roots -->
$\sqrt[3]{8}$, $\sqrt[n]{x}$

<!-- Complex roots -->
$\sqrt{\frac{a}{b}}$, $\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$

Rendered Output:

$\sqrt{2}$, $\sqrt{x^2 + y^2}$

$\sqrt[3]{8}$, $\sqrt[n]{x}$

$\sqrt{\frac{a}{b}}$, $\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$

Symbols and Operators

Greek Letters

markdown
<!-- Lowercase Greek letters -->
$\alpha$, $\beta$, $\gamma$, $\delta$, $\epsilon$, $\zeta$, $\eta$, $\theta$

$\iota$, $\kappa$, $\lambda$, $\mu$, $\nu$, $\xi$, $\pi$, $\rho$

$\sigma$, $\tau$, $\upsilon$, $\phi$, $\chi$, $\psi$, $\omega$

<!-- Uppercase Greek letters -->
$\Alpha$, $\Beta$, $\Gamma$, $\Delta$, $\Epsilon$, $\Zeta$, $\Eta$, $\Theta$

$\Lambda$, $\Xi$, $\Pi$, $\Sigma$, $\Phi$, $\Psi$, $\Omega$

Rendered Output:

$\alpha$, $\beta$, $\gamma$, $\delta$, $\epsilon$, $\zeta$, $\eta$, $\theta$

$\iota$, $\kappa$, $\lambda$, $\mu$, $\nu$, $\xi$, $\pi$, $\rho$

$\sigma$, $\tau$, $\upsilon$, $\phi$, $\chi$, $\psi$, $\omega$

$\Alpha$, $\Beta$, $\Gamma$, $\Delta$, $\Epsilon$, $\Zeta$, $\Eta$, $\Theta$

$\Lambda$, $\Xi$, $\Pi$, $\Sigma$, $\Phi$, $\Psi$, $\Omega$

Operators

markdown
<!-- Basic operations -->
$+$, $-$, $\times$, $\div$, $\pm$, $\mp$

<!-- Relational operations -->
$=$, $\neq$, $<$, $>$, $\leq$, $\geq$, $\ll$, $\gg$

<!-- Logical operations -->
$\land$, $\lor$, $\lnot$, $\implies$, $\iff$

<!-- Set operations -->
$\in$, $\notin$, $\subset$, $\supset$, $\cup$, $\cap$, $\emptyset$

<!-- Other symbols -->
$\infty$, $\partial$, $\nabla$, $\propto$, $\approx$, $\equiv$

Rendered Output:

$+$, $-$, $\times$, $\div$, $\pm$, $\mp$

$=$, $\neq$, $<$, $>$, $\leq$, $\geq$, $\ll$, $\gg$

$\land$, $\lor$, $\lnot$, $\implies$, $\iff$

$\in$, $\notin$, $\subset$, $\supset$, $\cup$, $\cap$, $\emptyset$

$\infty$, $\partial$, $\nabla$, $\propto$, $\approx$, $\equiv$

Advanced Math Structures

Summation and Integration

markdown
<!-- Summation -->
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

<!-- Integration -->
$$\int_a^b f(x) dx$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r}$$

$$\iint_D f(x,y) \, dx \, dy$$

$$\iiint_V f(x,y,z) \, dx \, dy \, dz$$

<!-- Limits -->
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

Rendered Output:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

$$\int_a^b f(x) dx$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r}$$

$$\iint_D f(x,y) , dx , dy$$

$$\iiint_V f(x,y,z) , dx , dy , dz$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

Matrices and Determinants

markdown
<!-- Basic matrix -->
$$
\begin{matrix}
a & b \\
c & d
\end{matrix}
$$

<!-- Matrix with parentheses -->
$$
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
$$

<!-- Determinant -->
$$
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix} = ad - bc
$$

<!-- System of equations -->
$$
\begin{cases}
x + y = 1 \\
2x - y = 0
\end{cases}
$$

<!-- Large matrix -->
$$
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
$$

Rendered Output:

$$ \begin{matrix} a & b \ c & d \end{matrix} $$

$$ \begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix} $$

$$ \begin{vmatrix} a & b \ c & d \end{vmatrix} = ad - bc $$

$$ \begin{cases} x + y = 1 \ 2x - y = 0 \end{cases} $$

$$ \begin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & 1 \end{bmatrix} $$

Multi-line Formulas

markdown
<!-- Aligned multi-line formulas -->
$$
\begin{align}
f(x) &= ax^2 + bx + c \\
&= a(x^2 + \frac{b}{a}x) + c \\
&= a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a}
\end{align}
$$

<!-- Piecewise cases -->
$$
f(x) = \begin{cases}
x^2 & \text{if } x \geq 0 \\
-x^2 & \text{if } x < 0
\end{cases}
$$

<!-- Numbered formulas -->
$$
E = mc^2 \tag{1}
$$

$$
F = ma \tag{2}
$$

Rendered Output:

$$ \begin{align} f(x) &= ax^2 + bx + c \ &= a(x^2 + \frac{b}{a}x) + c \ &= a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a} \end{align} $$

$$ f(x) = \begin{cases} x^2 & \text{if } x \geq 0 \ -x^2 & \text{if } x < 0 \end{cases} $$

$$ E = mc^2 \tag{1} $$

$$ F = ma \tag{2} $$

Fonts and Styles

Math Fonts

markdown
<!-- Bold -->
$\mathbf{A}$, $\mathbf{x}$, $\boldsymbol{\alpha}$

<!-- Italic (default) -->
$A$, $x$, $\alpha$

<!-- Blackboard bold -->
$\mathbb{R}$, $\mathbb{C}$, $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$

<!-- Calligraphic -->
$\mathcal{A}$, $\mathcal{B}$, $\mathcal{F}$, $\mathcal{L}$

<!-- Script -->
$\mathscr{A}$, $\mathscr{B}$, $\mathscr{F}$, $\mathscr{L}$

<!-- Monospace -->
$\mathtt{text}$, $\mathtt{ABC}$

<!-- Roman -->
$\mathrm{d}x$, $\mathrm{sin}$, $\mathrm{cos}$

Rendered Output:

$\mathbf{A}$, $\mathbf{x}$, $\boldsymbol{\alpha}$

$A$, $x$, $\alpha$

$\mathbb{R}$, $\mathbb{C}$, $\mathbb{N}$, $\mathbb{Z}$, $\mathbb{Q}$

$\mathcal{A}$, $\mathcal{B}$, $\mathcal{F}$, $\mathcal{L}$

$\mathscr{A}$, $\mathscr{B}$, $\mathscr{F}$, $\mathscr{L}$

$\mathtt{text}$, $\mathtt{ABC}$

$\mathrm{d}x$, $\mathrm{sin}$, $\mathrm{cos}$

Size Control

markdown
<!-- Different sizes -->
$\tiny{tiny}$ $\small{small}$ $\normalsize{normal}$ $\large{large}$ $\Large{Large}$ $\LARGE{LARGE}$ $\huge{huge}$

<!-- Usage in formulas -->
$$\Large \sum_{i=1}^{n} \small x_i = \normalsize X$$

Rendered Output:

$\tiny{tiny}$ $\small{small}$ $\normalsize{normal}$ $\large{large}$ $\Large{Large}$ $\LARGE{LARGE}$ $\huge{huge}$

$$\Large \sum_{i=1}^{n} \small x_i = \normalsize X$$

Special Symbols and Marks

Arrows

markdown
<!-- Single arrows -->
$\leftarrow$, $\rightarrow$, $\uparrow$, $\downarrow$

<!-- Double arrows -->
$\leftrightarrow$, $\updownarrow$

<!-- Long arrows -->
$\longleftarrow$, $\longrightarrow$, $\longleftrightarrow$

<!-- Double line arrows -->
$\Leftarrow$, $\Rightarrow$, $\Leftrightarrow$

<!-- Special arrows -->
$\mapsto$, $\to$, $\gets$, $\hookrightarrow$, $\leadsto$

Rendered Output:

$\leftarrow$, $\rightarrow$, $\uparrow$, $\downarrow$

$\leftrightarrow$, $\updownarrow$

$\longleftarrow$, $\longrightarrow$, $\longleftrightarrow$

$\Leftarrow$, $\Rightarrow$, $\Leftrightarrow$

$\mapsto$, $\to$, $\gets$, $\hookrightarrow$, $\leadsto$

Superscripts and Decorations

markdown
<!-- Hat -->
$\hat{a}$, $\widehat{abc}$

<!-- Tilde -->
$\tilde{a}$, $\widetilde{abc}$

<!-- Overline -->
$\bar{a}$, $\overline{abc}$

<!-- Underline -->
$\underline{abc}$

<!-- Vector arrow -->
$\vec{a}$, $\overrightarrow{AB}$

<!-- Dot -->
$\dot{a}$, $\ddot{a}$, $\dddot{a}$

Rendered Output:

$\hat{a}$, $\widehat{abc}$

$\tilde{a}$, $\widetilde{abc}$

$\bar{a}$, $\overline{abc}$

$\underline{abc}$

$\vec{a}$, $\overrightarrow{AB}$

$\dot{a}$, $\ddot{a}$, $\dddot{a}$

Complex Formula Examples

Physics Formulas

markdown
<!-- Schrödinger equation -->
$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)$$

<!-- Maxwell's equations -->
$$
\begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t}
\end{align}
$$

<!-- Lorentz transformation -->
$$
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix} = 
\begin{pmatrix}
\gamma & -\gamma v/c & 0 & 0 \\
-\gamma v/c & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix}
$$

Rendered Output:

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)$$

$$ \begin{align} \nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \ \nabla \cdot \mathbf{B} &= 0 \ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \ \nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t} \end{align} $$

$$ \begin{pmatrix} ct' \ x' \ y' \ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma v/c & 0 & 0 \ -\gamma v/c & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \ x \ y \ z \end{pmatrix} $$

Mathematical Theorems

markdown
<!-- Fourier transform -->
$$\mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

<!-- Taylor expansion -->
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

<!-- Euler's formula -->
$$e^{i\theta} = \cos\theta + i\sin\theta$$

<!-- Gaussian integral -->
$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \quad (a > 0)$$

<!-- Bayes' theorem -->
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Rendered Output:

$$\mathcal{F}{f(t)} = F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \quad (a > 0)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Algorithm Complexity

markdown
<!-- Time complexity -->
$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!)$$

<!-- Recurrence relation -->
$$T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n > 1
\end{cases}$$

<!-- Master theorem -->
$$T(n) = aT(n/b) + f(n)$$
Where $a \geq 1$, $b > 1$, $f(n)$ is an asymptotically positive function.

Rendered Output:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!)$$

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \ 2T(n/2) + O(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = aT(n/b) + f(n)$$ Where $a \geq 1$, $b > 1$, $f(n)$ is an asymptotically positive function.

Best Practices for Math Formulas

Writing Suggestions

markdown
✅ Recommended:

1. **Use semantic commands**:
   - Use `\sin`, `\cos`, `\log` instead of `sin`, `cos`, `log`
   - Use `\mathrm{d}x` for differentials

2. **Keep spacing reasonable**:
   - Add appropriate spaces around operators: `\,` (thin space), `\;` (medium space), `\quad` (large space)

3. **Use matching brackets**:
   - Auto-size: `\left(\right)`, `\left[\right]`, `\left\{\right\}`

4. **Align formulas**:
   - Use the `align` environment to align equal signs
   - Use `&` to mark alignment points

❌ Avoid:

1. Not breaking long formulas into lines
2. Missing necessary brackets
3. Inconsistent symbol usage
4. Ignoring syntax error checks

Common Error Corrections

markdown
<!-- ❌ Incorrect -->
$sin(x)$, $log(x)$, $max(a,b)$

<!-- ✅ Correct -->
$\sin(x)$, $\log(x)$, $\max(a,b)$

<!-- ❌ Incorrect -->
$(\frac{a}{b})$

<!-- ✅ Correct -->
$\left(\frac{a}{b}\right)$

<!-- ❌ Incorrect -->
$x=1+2+3+...+n$

<!-- ✅ Correct -->
$x = 1 + 2 + 3 + \cdots + n$

Accessibility Considerations

markdown
To improve formula accessibility:

1. **Add text descriptions**:
   $$E = mc^2$$
   > This is Einstein's mass-energy equation, meaning energy equals mass times the speed of light squared.

2. **Use alternative text**:
   Add simplified explanations after complex formulas

3. **Avoid using color alone for distinction**:
   Use different symbols or styles to distinguish concepts

4. **Keep formulas concise**:
   Break complex formulas into multiple steps

Supported Math Environments

Markdown Processor Support

ProcessorMath SupportSyntaxConfiguration
GitHub$...$, $$...$$Automatic
GitLab$...$, $$...$$Needs to be enabled
VitePress$...$, $$...$$Plugin config
Jekyll$...$, $$...$$MathJax/KaTeX
Hugo$...$, $$...$$Theme support

VitePress Configuration Example

javascript
// .vitepress/config.js
export default {
  markdown: {
    math: true
  }
}

Rendering Engines

markdown
Common math formula rendering engines:

1. **MathJax**:
   - Most complete, supports full LaTeX
   - High rendering quality, but slower loading

2. **KaTeX**:
   - Fast rendering
   - Supports common math syntax
   - Smaller size

3. **MathML**:
   - Native browser support
   - Complex syntax, usually auto-generated

Tools and Resources

Online Editors

  • LaTeX Live: Real-time preview of LaTeX formulas
  • MathJax Demo: Test MathJax rendering
  • KaTeX Demo: KaTeX formula testing
  • Desmos: Graphical math expressions

Formula Editing Tools

  • MathType: Professional math formula editor
  • LaTeX Workshop (VS Code): LaTeX writing plugin
  • MathQuill: Visual math editor
  • Wiris: Online math formula editor

Reference Resources

  • LaTeX Math Symbols: Math symbol reference table
  • Detexify: Handwritten LaTeX symbol recognition
  • MathJax Documentation: Official documentation
  • KaTeX Supported Functions: Supported function list

By mastering math formula syntax, you can elegantly express complex mathematical concepts and formulas in technical documentation.

Built by www.markdownlang.com